The c-Jun N-terminal kinase signaling pathway mediates chrysotile asbestos-induced alveolar epithelial cell apoptosis

نویسندگان

  • PENG LI
  • TIE LIU
  • DAVID W. KAMP
  • ZIYING LIN
  • YAHONG WANG
  • DONGHONG LI
  • LAWEI YANG
  • HUIJUAN HE
  • GANG LIU
چکیده

Exposure to chrysotile asbestos exposure is associated with an increased risk of mortality in combination with pulmonary diseases including lung cancer, mesothelioma and asbestosis. Multiple mechanisms by which chrysotile asbestos fibers induce pulmonary disease have been identified, however the role of apoptosis in human lung alveolar epithelial cells (AEC) has not yet been fully explored. Accumulating evidence implicates AEC apoptosis as a crucial event in the development of both idiopathic pulmonary fibrosis and asbestosis. The aim of the present study was to determine whether chrysotile asbestos induces mitochondria‑regulated (intrinsic) AEC apoptosis and, if so, whether this induction occurs via the activation of mitogen‑activated protein kinases (MAPK). Human A549 bronchoalveolar carcinoma‑derived cells with alveolar epithelial type II‑like features were used. The present study showed that chrysotile asbestos induced a dose‑ and time‑dependent decrease in A549 cell viability, which was accompanied by the activation of the MAPK c‑Jun N‑terminal kinases (JNK), but not the MAPKs extracellular signal‑regulated kinase 1/2 and p38. Chrysotile asbestos was also shown to induce intrinsic AEC apoptosis, as evidenced by the upregulation of the pro‑apoptotic genes Bax and Bak, alongside the activation of caspase‑9, poly (ADP‑ribose) polymerase (PARP), and the release of cytochrome c. Furthermore, the specific JNK inhibitor SP600125 blocked chrysotile asbestos‑induced JNK activation and subsequent apoptosis, as assessed by both caspase‑9 cleavage and PARP activation. The results of the present study demonstrated that chrysotile asbestos induces intrinsic AEC apoptosis by a JNK‑dependent mechanism, and suggests a potential novel target for the modulation of chrysotile asbestos‑associated lung diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibroblast growth factor-10 prevents asbestos-induced alveolar epithelial cell apoptosis by a mitogen-activated protein kinase-dependent mechanism.

Asbestos induces alveolar epithelial cell (AEC) DNA damage and apoptosis by the mitochondria-regulated death pathway and oxidative stress. Fibroblast growth factor-10 (FGF-10), an alveolar epithelial type II cell mitogen that is required for the lung development, prevents H(2)O(2)-induced AEC DNA damage by a mitogen activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)-dep...

متن کامل

PlGF mediates neutrophil elastase-induced airway epithelial cell apoptosis and emphysema

BACKGROUND Chronic pulmonary obstructive disease (COPD) has become the fourth leading cause of death worldwide. Cigarette smoking induces neutrophil elastase (NE) and contributes to COPD, but the detailed mechanisms involved are not fully established. In an animal model of pulmonary emphysema, there are increased expressions of placenta growth factor (PlGF) and lung epithelial (LE) cell apoptos...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

Effects of Chrysotile Exposure in Human Bronchial Epithelial Cells: Insights into the Pathogenic Mechanisms of Asbestos-Related Diseases

BACKGROUND Chrysotile asbestos accounts for > 90% of the asbestos used worldwide, and exposure is associated with asbestosis (asbestos-related fibrosis) and other malignancies; however, the molecular mechanisms involved are not fully understood. A common pathogenic mechanism for these malignancies is represented by epithelial-mesenchymal transition (EMT), through which epithelial cells undergo ...

متن کامل

Involvement of protein kinase C, phospholipase C, and protein tyrosine kinase pathways in oxygen radical generation by asbestos-stimulated alveolar macrophage.

Although asbestos stimulates oxygen radical generation in alveolar macrophages, the exact mechanism is still not clear. The purpose of this study was to compare the ability of three asbestos fibers (amosite, chrysotile, and crocidolite) to generate oxygen radicals in macrophages and examine the mechanism of this action. All asbestos fibers were able to induce chemiluminescence but chrysotile in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015